Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Bio Mater ; 7(2): 1081-1094, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38294873

RESUMO

Hindlimb ischemia is a common disease worldwide featured by the sudden decrease in limb perfusion, which usually causes a potential threat to limb viability and even amputation or death. Revascularization has been defined as the gold-standard therapy for hindlimb ischemia. Considering that vascular injury recovery requires cellular adaptation to the hypoxia, hypoxia-inducible factor 1 α (HIF-1α) is a potential gene for tissue restoration and angiogenesis. In this manuscript, effective gene delivery vector PEI-ß-CD (PC) was reported for the first application in the hindlimb ischemia treatment to deliver HIF-1α plasmid in vitro and in vivo. Our in vitro finding demonstrated that PC/HIF-1α-pDNA could be successfully entered into the cells and mediated efficient gene transfection with good biocompatibility. More importantly, under hypoxic conditions, PC/HIF-1α-pDNA could up-regulate the HUEVC cell viability. In addition, the mRNA levels of VEGF, Ang-1, and PDGF were upregulated, and transcriptome results also demonstrated that the cell-related function of response to hypoxia was enhanced. The therapeutic effect of PC/HIF-1α-pDNA was further estimated in a murine acute hindlimb ischemia model, which demonstrated that intramuscular injection of PC/HIF-1α-pDNA resulted in significantly increased blood perfusion and alleviation in tissue damage, such as tissue fibrosis and inflammation. The results provide a rationale that HIF-1α-mediated gene therapy might be a practical strategy for the treatment of limb ischemia.


Assuntos
Neovascularização Fisiológica , Polietilenoimina , Camundongos , Animais , Neovascularização Fisiológica/genética , Músculo Esquelético , Membro Posterior/irrigação sanguínea , Isquemia/terapia , Isquemia/tratamento farmacológico , Terapia Genética/métodos , Hipóxia/terapia
2.
Adv Mater ; 35(45): e2209647, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37466631

RESUMO

Organic phototheranostics simultaneously having fluorescence in the second near-infrared (NIR-II, 1000-1700 nm) window, and photothermal and photodynamic functions possess great prospects in tumor diagnosis and therapy. However, such phototheranostics generally suffer from low brightness and poor photodynamic performance due to severe solvatochromism. Herein, an organic NIR-II fluorophore AS1, which possesses an inverted dependence of fluorescence quantum yield on polarity, is reported to serve as potent phototheranostics for tumor diagnosis and therapy. After encapsulation of AS1 into nanostructures, the obtained phototheranostics (AS1R ) exhibit high extinction coefficients (e.g., 68200 L mol-1  cm-1 at 808 nm), NIR-II emission with high fluorescence quantum yield up to 4.7% beyond 1000 nm, photothermal conversion efficiency of ≈65%, and 1 O2 quantum yield up to 4.1%. The characterization of photophysical properties demonstrates that AS1R is superior to other types of organic phototheranostics in brightness, photothermal effect, and photodynamic performance at the same mass concentration. The excellent phototheranostic performance of AS1R enables clear visualization and complete elimination of tumors using a single and low injection dose. This study demonstrates the merits and prospects of NIR-II fluorophore with inverted polarity dependence of fluorescence quantum yield as high-performance phototheranostic agents for fluorescence imaging and phototherapy of tumors.


Assuntos
Nanopartículas , Neoplasias , Humanos , Fluorescência , Nanopartículas/química , Nanomedicina Teranóstica/métodos , Fototerapia/métodos , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Corantes Fluorescentes/química , Linhagem Celular Tumoral
3.
Macromol Biosci ; 23(11): e2300151, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37295777

RESUMO

Insufficient accumulation of drug at the tumor site and the low drug response are the main reason for the unsatisfactory effect of cancer therapy. Delivery drugs exquisitely to subcellular level can be employed to reduce side effects, and expand the therapeutic window. Herein, a triphenylphosphine (TPP) modified lipid nanoparticles is designed which are loaded with the photosensitizer indocyanine green (ICG) and chemotherapeutic paclitaxel (PTX) for mitochondria-targeted chemo-phototherapy. Owing to the movement of majority mitochondria along microtubules in cytoplasm, mitochondrial targeting may enable PTX to act more effectively. Meanwhile, the existence of chemo-drug potentiates the phototherapy to achieve synergistic anti-tumor activity. As expected, mitochondria targeting nanomedicine (M-ICG-PTX NPs) showed improved mitochondria targeted cellular distribution and enhanced cell cytotoxicity in vitro. Also, M-ICG-PTX NPs exhibited higher tumor growth inhibition ability by promoting cell apoptosis and oxeiptosis pathway, and high effective inhibition of primary tumor growth and tumor metastasis. Taken together, M-ICG-PTX NPs may be promising nanoplatforms to achieve potent therapeutic effect for the combination of chemo- and photo-therapy (PTT).


Assuntos
Sistemas de Liberação de Medicamentos , Nanopartículas , Linhagem Celular Tumoral , Fototerapia , Paclitaxel/farmacologia , Verde de Indocianina/farmacologia , Estresse Oxidativo , Nanopartículas/ultraestrutura , Mitocôndrias
4.
Biomater Sci ; 10(20): 6013-6023, 2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36069330

RESUMO

Conventional photothermal therapy (PTT) often causes unwanted hyperthermia damage to the surrounding healthy tissues, and fails in the ablation of infiltrating and malignant tumors, which even leads to tumor recurrence. The main reasons for the suboptimal therapeutic efficacy of PTT include: (i) the heterogenous distribution of PTT agents in cancer cells, (ii) the limited penetration depth of irradiation light, and (iii) importantly, the difficulty in controlling the photothermal process which often leads to overheated hyperthermia and severe side effects, including inflammation, immune escape, metastasis and damage to normal tissues surrounding the tumor. It is envisioned that organelle targeted mild PTT would be a good strategy to overcome these shortcomings and significantly improve the therapeutic efficacy, decrease the therapeutic threshold for both the drug dosage and hyperthermia temperature, and diminish damage to the neighboring healthy tissues. Although small biocompatible organic photothermal agents are promising candidates for organelle targeted mild PTT, related research together with their therapeutic mechanism study has rarely been reported so far. In this contribution, we fabricate efficient small organic molecules (TD1) via donor-acceptor molecular engineering, and further package TD1 molecules into a lipid carrier to construct mitochondria-targeted nanoparticles (M-TD1 NPs) for mild PTT. The highly desirable photothermal performance of M-TD1 NPs dramatically improves the efficacy of photothermal cancer cell ablation. Benefiting from the excellent PTT effects of M-TD1 NPs, favorable antitumor efficacy and metastasis inhibition are achieved in vitro and in vivo. Mechanistically, the improved mitochondria-based mild thermal treatment triggers the apoptosis-dependent cell death and influences the autophagy of cancer cells, resulting in enhanced cancer elimination and suppressed cancer cell migration. This work demonstrates that sub-cellular targeted mild PTT is promising to control cell apoptosis and autophagy and has potential for future metastatic cancer therapy.


Assuntos
Hipertermia Induzida , Nanopartículas , Neoplasias , Animais , Linhagem Celular Tumoral , Hipertermia Induzida/métodos , Lipídeos , Camundongos , Camundongos Nus , Mitocôndrias , Neoplasias/tratamento farmacológico , Fototerapia/métodos , Terapia Fototérmica
5.
ACS Appl Bio Mater ; 4(4): 3015-3026, 2021 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35014389

RESUMO

To ensure improved efficacy and minimized toxicity of therapeutic molecules, it is generally accepted that specifically delivering them to the subcellular site of their action will be attractive. Phototherapy has received considerable attention because of its noninvasiveness, high temporal-spatial resolution, and minimal drug resistance. As important functional organelles in cells, mitochondria and endoplasmic reticulum (ER) participate in fundamental cellular processes, which make them much more sensitive to reactive oxygen species (ROS) and hyperthermia. Thus, mitochondria- or ER-targeted phototherapy will be rational strategies for synergetic cancer therapy. In this review, we focus on the latest advances in molecules and nanomaterials currently used for mitochondria- and ER-targeted phototherapy.


Assuntos
Materiais Biocompatíveis/farmacologia , Retículo Endoplasmático/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Organelas/química , Fototerapia , Materiais Biocompatíveis/química , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Humanos , Hipertermia/tratamento farmacológico , Hipertermia/metabolismo , Teste de Materiais , Mitocôndrias/metabolismo , Tamanho da Partícula , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...